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Nonlinear evolution of a weakly unstable
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A study is made of the nonlinear spatial evolution of an externally excited instability
wave in a mixing layer of nearly perfectly conducting fluid with a large Reynolds
number in a weak parallel magnetic field.

It is shown that the evolution pattern bears a resemblance to that of disturbances
in a weakly stratified shear flow with the Prandtl number less than unity which was
studied in our earlier publication (Shukhman & Churilov 1997): a weak magnetic
field, like a weak stratification when Pr < 1, has a stabilizing effect on the nonlinear
development of disturbances and in the case when the linear growth rate of the wave
is not too large leads either to the instability saturation in the viscous critical layer
regime or to the establishment of a unsteady nonlinear critical layer regime where the
wave amplitude oscillates without exceeding a certain maximum value. In this case
the regime of the quasi-steady nonlinear critical layer is not attained evolutionarily.
When the linear growth rate is large enough the magnetic field has no dynamical effect
on evolution and the quasi-steady nonlinear critical layer regime with the well-known
power-law growth of amplitude (A ∝ x2/3) is eventually attained.

Also, the critical layer structure and the evolution behaviour in the case of a strong
difference of dissipation coefficients (i.e. ordinary viscosity and magnetic viscosity) are
considered.

1. Introduction
This paper is a step forward in the study of the weakly nonlinear evolution

of unstable disturbances in shear flows of a nearly inviscid fluid to ascertain the
connection between the character of this evolution and the neutral mode behaviour
at a critical level y = yc where the flow velocity vx = u(y) coincides with the wave
velocity. The motivation for this study, in general, has been already described in our
previous papers (Churilov & Shukhman 1995; Shukhman & Churilov 1997); however,
for the purpose of a consistent presentation, we briefly reproduce it here.

It is well known that it is the narrow region surrounding a critical level, i.e.
a critical layer (CL), where the most intense wave–flow interaction occurs, which
determines the wave’s weakly nonlinear dynamics. Outside the CL, the problem is
virtually a linear and non-dissipative one, and in the case of a small supercriticality the
solution behaviour is described in the main approximation by the neutral mode of an
inviscid linearized problem. Inside the CL, on the other hand, these weak effects (e.g.
the viscosity, nonstationarity and nonlinearity) become important, and their relative
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importance depends upon which of the three scales – viscous (`ν), unsteady (`t) and
nonlinear (`N) – is largest. Here

`ν = ν1/3, `t = |A|−1d|A|/ds, `N = |A|p, (1.1)

ν is inverse Reynolds number, A is the wave’s complex amplitude, p is the parameter
dependent on the degree of stratification and varying from 1/2 in a homogeneous
medium (as, in particular, in this paper) to 2/3 in a medium with a strong stratification,
and s is the evolution variable (the time or downstream coordinate). The CL regime is
also determined from the dominant scale, and the CL regimes are said to be viscous,
unsteady and nonlinear, respectively.

As is evident from (1.1), the nonlinear and the unsteady scales depend on the wave
amplitude and on its rate of variation; consequently, they vary with the evolution.
The nonlinear evolution problem is usually stated as a problem of the development
(spatial or temporal) of the originally very small unstable disturbance, whose evolution
following the attainment of the nonlinearity threshold (i.e. a value of the amplitude
at which nonlinear terms become of the same order of magnitude as linear terms)
is described by a certain form of the nonlinear evolution equation (NEE). Since the
form of the NEE is closely related to the CL regime, a change in the CL scale involves
also a change of the form of the NEE and hence the law of evolution. The sequence
of evolutionary stages is said to be the evolution scenario.

The predominant role of the CL in the process of nonlinear generation of harmonics
indicates the existence of a close connection between the evolution scenario and
the neutral mode behaviour at a critical level. And such a connection was indeed
revealed (Churilov & Shukhman 1992), and it was shown that there exist two principal
scenarios for nonlinear evolution: fast and slow, according to which neutral mode,
singular or regular, is at a critical level. It will be recalled that the mode is said to be
singular if at least one of its essential (i.e. unsplitting) components (for instance, one
of the perturbed velocity components, the density, etc.) has the pole or a branching
point.

A fundamental difference between the two evolution scenarios, fast and slow, is as
follows.

In the case of the singular neutral mode the nonlinearity threshold is low. This
means that the nonlinear stage commences as early as when the CL regime is still
linear, i.e. viscous or unsteady (the particular kind depends on the degree of supercrit-
icality corresponding to a given disturbance). If the disturbance ‘starts’ immediately
from the unsteady CL region, i.e. if the supercriticality, measured by the linear growth
rate γL, is reasonably large, γL > ν1/3, upon attaining the nonlinearity threshold, the
amplitude begins to grow explosively:†

|A| ∝ f−1/2(s0 − s)−α, α > 0, f = const. (1.2)

In this case the unsteady scale

`t ∼ γ ∼ |Af1/2|1/α (1.3)

grows together with the amplitude so fast, however, that it remains all the time
larger than `N(∼ Ap) because typically 1/α < p. This means that no transition to

† The evolution law (1.2) is an asymptotic solution (when γ � γL) of the integro-differential
NEE, whose structure in a model form may be represented as

dA/ds = γLA+ fA3/`2α−1
t , `t ∼ γ = |A|−1d|A|/ds.
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the nonlinear CL regime occurs right up to the amplitudes A = O(1), while larger
amplitudes are beyond the scope of weakly nonlinear theory.

If, however, a disturbance ‘starts’ from the viscous CL region (γL < ν1/3), it is
either stabilized in the viscous CL regime (with a stabilizing sign of the nonlinear
term in the Landau–Stuart–Watson NEE that holds in this case) or (with a negative
sign) passes into an explosive stage with the law of growth |A| ∝ (s1 − s)−1/2, while
remaining initially still in the viscous CL regime and subsequently switching over to
the unsteady CL regime with the law of growth (1.2). Such a ‘fast’ scenario is followed
by the evolution of disturbances with the singular neutral mode in a stratified flow
(Churilov & Shukhman 1988) and in compressible flows (Goldstein & Leib 1989;
Leib 1991; Shukhman 1991), and three-dimensional disturbances in a homogeneous
incompressible flow (Goldstein & Choi 1989; Wu, Lee & Cowley 1993; Wu 1993a, b;
Churilov & Shukhman 1994; Wu & Cowley 1995; Wu, Lieb & Goldstein 1997).

Whenever, however, the neutral mode is regular, the role of the nonlinearity becomes
weaker. The nonlinearity in the case of amplitudes corresponding to the viscous and
unsteady CL regimes is still non-competitive and comes into play later, only at the
transition to the nonlinear CL regime, i.e. when

|A| >∼ max (ν2/3, γ2
L)

(for p = 1/2). Upon attaining the boundary of the nonlinear CL regime (coincident
in this case with the nonlinearity threshold), the exponential growth with the growth
rate γL is replaced by a slow power-law growth

|A| ∝ s2/3. (1.4)

More precisely, the evolution law (1.4) starts almost immediately following the tran-
sition to the nonlinear CL regime (A ∼ ν2/3) for disturbances with γL < ν1/3, or
following some relaxation stage at A ∼ γ2

L for disturbances with γL > ν1/3 (Goldstein
& Hultgren 1988). ‘Slow’ scenarios of such a kind are realized for two-dimensional
disturbances in a homogeneous mixing layer (Goldstein & Hultgren 1988; Huerre &
Scott 1980; Hultgren 1992), for a zonal flow on the β-plane (Churilov & Shukhman
1987), and for a circular mixing layer (Shukhman 1989).

These two types of scenario differ so that how they can be ‘matched’ needs
unravelling. To clarify this situation requires investigating scenarios of the intermediate
type. Such scenarios must be realized in situations where the ‘weight’ of the singularity
in the singular mode is weak, i.e. where the factor f that is responsible for the
singularity and hence for the explosive growth (1.2) is small. When f � 1, the
explosive growth rate (1.3) is smaller than when f = O(1). Therefore, the nonlinear
scale `N has time to overtake the unsteady scale `t ∼ γ still at a reasonably small
amplitude |A| ∼ f1/(2(αp−1)) � 1. This means that at f � 1 the transition to the
nonlinear CL regime occurs within the framework of the validity of theory, as in
the case with the regular neutral mode. Hence, when investigating the evolution of
disturbances with the weakly singular neutral mode, we have the opportunity to study
the changeover of the evolution character as the factor f varies from zero to values
of about unity.

A weak singularity usually manifests itself in the fact that the singular component of
the neutral mode nearly entirely detaches itself from the regular one and has a minor
effect on it. This is precisely the situation in the two cases which we have already taken
up: weakly three-dimensional disturbances in a uniform flow (Churilov & Shukhman
1995) and a weakly stratified flow (Shukhman & Churilov 1997, hereafter referred
to as I). In the first case the parameter (kz/kx)

2 characterizing the degree of the
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wave’s three-dimensional character serves as the factor f, and in the second case the
Richardson number Ri does so.

Despite the presence of a number of similar elements in the scenarios in both cases
considered above, there are also substantially differing points caused by a difference
in the interaction of the regular and singular components of a disturbance. This
difference implies that in the case of weakly three-dimensional disturbances such an
interaction is driven out to the periphery of the CL and is proceeding in so-called outer
diffusion layers, while in a weakly stratified flow such an interaction encompasses the
entire CL thickness. These differences lead to different types of NEE and to different
types of transitions from one CL regime to another. In particular, the evolution in
the regime of unsteady nonlinear CL is a new element of the scenario that was first
discovered when investigating an instability in a stratified flow and is absent in the
problem of weakly three-dimensional disturbances. It is such a regime of evolution
where the vorticity inside the CL does not adjust itself to a local instantaneous
value of the wave amplitude, and unsteady effects inside the nonlinear CL are more
important than dissipative ones. Such a regime of a nonlinear CL differs greatly from
a conventional regime of a quasi-steady nonlinear CL invoked in all earlier work,
beginning with the pioneering publications of Benney & Bergeron (1969) and Davis
(1969) where the role of unsteady terms is negligibly small not only compared with
nonlinear but also with dissipative terms. The stage of a nonlinear unsteady CL can
set in following the stage of explosive growth in the regime of an unsteady (linear) CL
after the nonlinear scale `N has overtaken the unsteady scale `t. However, whether
such a stage sets in or does not, depends on the interaction character of the regular
and singular components and on other details (such as the symmetry properties of
the regular component).

To appreciate the extent to which the appearance of the regime of an unsteady
nonlinear CL following the stage of explosive growth is typical, it is necessary also to
consider other types of flows with the weakly singular neutral mode.

In this paper we consider a homogeneous incompressible flow of nearly perfect
conducting fluid with a weak parallel uniform magnetic field. Broadly speaking, in
such a flow the neutral mode has two critical levels, and on each of them it is singular.
If, however, the magnetic field is sufficiently small, critical levels are close, and under
certain conditions a unified common CL can be considered. In this case we have
exactly the same formal situation as in the two above-mentioned cases when the
singular component (in this case the z-component of the magnetic vector-potential)
is detached from the regular component (vorticity) and weakly interacts with it. The
square of the Alfvén-to-shear velocity ratio serves here as the factor f governing the
‘weight’ of the singularity.

It will be shown that the evolution scenario for such a flow very much resembles
the scenario which is realized in a weakly stratified flow with less-than-unity Prandtl
number, despite the differences in the character of the action of the singular compo-
nent on the regular component and also in the structure of these two types of flows.
As in the case with a weakly stratified flow, a distinguishing feature of this scenario
is the existence (when supercriticality is small enough) of the stage of an unsteady
nonlinear CL following the stage of explosive growth.

Furthermore, in this paper attention is also centred on two points which were
left in the background in earlier work. First, a numerical assessment is made of the
boundary in the parameter γL/ν

1/3 separating two types of evolution behaviour in
linear (i.e. viscous and unsteady) CL regimes: quasi-stationary development (ending
in the instability saturation) and explosive growth (either culminating in the transition
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to the nonlinear CL regime or falling outside the scope of weakly nonlinear theory).
Secondly, a study is made of the CL structure and the disturbance dynamics in the
case when two dissipative coefficients involved in the problem differ greatly from each
other, which leads to the appearance of an additional diffusion scale.

The paper is organized as follows. In § 2 we report some results of linear analysis
to illustrate the overall picture of shear flow stability in a uniform parallel magnetic
field and the behaviour of the neutral modes. Section 3 gives the formulation of the
problem of the nonlinear evolution, the scaling and the final system of equations
whose solutions in the limiting cases of linear (viscous and unsteady) CL regimes
are found in § 4, and in the regime of quasi-steady nonlinear CL in § 5. An overall
picture of disturbance evolution is constructed in § 6 on the basis of synthesizing
results on the evolution in different CL regimes. This Section also gives results
derived by investigating the evolution with strongly differing dissipation coefficients.
Section 7 discusses the results obtained. Appendices A and B give the derivation
of the asymptotic behaviour of the function Φ5(λ, Pm) introduced for describing the
quasi-steady CL regimes, depending on the Haberman parameter λ (Haberman 1972)
and the magnetic Prandtl number Pm.

2. Some information from linear theory
The linear stability of magnetofluid shear flows is a subject of numerous papers

(see, e.g. Chen & Morrison 1991 and works cited there). We now present some results
of linear non-dissipative analysis, but only those aspects which are important for the
weakly nonlinear theory.

Consider a shear flow with a monotonic velocity profile vx = u(y) containing an
inflection point along a uniform magnetic field H0 = (H0, 0, 0). Two-dimensional
disturbances, to which we confine our treatment here, may be represented by the
stream function ψ(x, y) and the z-component of the vector-potential of the magnetic
field χ, so that vx = ∂ψ/∂y, vy = −∂ψ/∂x; Hx = ∂χ/∂y, Hy = −∂χ/∂x. For

disturbances of the form f(x, y) = f̂(y) exp(−iωt+ikx) we obtain a linearized equation
(see e.g. Kent 1968)

d

dy

[
(u− c)2 − c2

A

] dχ̂

dy
− k2

[
(u− c)2 − c2

A

]
χ̂ = 0, c = ω/k, (2.1)

with the boundary condition χ̂ → 0 when y → ±∞. A perturbation of the stream
function ψ̂(y) is related to χ̂(y) by the relation

ψ̂ =
u− c
H0

χ̂ (2.2)

and satisfies the equation

(u− c)∆̂ψ̂ − u′′ψ̂ = c2
A∆̂
(
ψ̂/(u− c)

)
, (2.3)

which differs from the Rayleigh equation by the presence of a term with cA on the
right-hand side. Here ∆̂ = d2/dy2 − k2, cA = (H2

0/4πρ)1/2 is the Alfvén velocity.
Generally speaking, the presence of a parallel uniform magnetic field has a stabi-

lizing effect on an ideal instability of a free monotonic flow profile with an inflection
point. To visualize this, we turn to a generalization of Howard’s semicircle theorem
(e.g. Chandra 1973) which states that complex eigenvalues c = cr + ici can lie only
inside the upper semicircle

(cr − u)2 + c2
i 6 w

2 − c2
A, (2.4)
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Figure 1. The range of possible values of the phase velocity c of the neutral mode as a function of
the magnitude of the magnetic field (bounded by a semicircle). The semicircle is divided into three
regions in which, respectively, only one resonance (+), only one resonance (−) and both resonances
(±) are possible.

where u= 1
2

(umax+umin) , w= 1
2

(umax−umin) , umax =max{u(y)}, umin =min{u(y)}. It is
evident from (2.4) that when cA > w the flow becomes stable. One can also see that
the phase velocity cr of the neutral mode (ci = 0) is confined within a narrower range
compared with the case without a magnetic field:

u− (w2 − c2
A)1/2 6 cr 6 u+ (w2 − c2

A)1/2. (2.5)

This range is contracted to a point cr = u when cA = w (see figure 1).
We now direct our attention to the question of critical levels. It is evident from

(2.1) that for the flow with a monotonic velocity profile, the neutral mode (if it exists)
can have in principle two critical levels: when y = y+

c and y = y−c , where

u(y±c ) = c± cA, (2.6)

which merge together when cA → 0. For a flow without a magnetic field, it follows
from (2.5) that umin 6 c 6 umax, which means that the neutral mode is certain to have
a critical level. In the presence of a field, the question of the existence of a critical
level is somewhat more complicated; in this case, however, it is also possible to show
that at least one critical level does of necessity exist. Indeed, the resonance (+) is
realized if umin < c+ cA < umax, i.e. if

umin − cA < c < umax − cA, (2.7)

and the resonance (−) is realized if umin < c− cA < umax, i.e. if

umin + cA < c < umax + cA. (2.8)

Regions where the inequalities (2.7) and (2.8) are valid totally cover the entire
semicircle on the plane (c, cA) of possible values of c (figure 1), which does mean the
obligatory existence of at least one critical level at any value of cA smaller than w.

In figure 1 the symbol (+) denotes the region of phase velocities c where only one
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Figure 2. Neutral curve for a flow with the velocity profile u(y) = u+ tanh y
(numerically obtained by the author)

resonance (+) is possible, the symbol (−) corresponds to the region where only one
resonance (−) is possible, and both critical levels exist in the region marked by (±).

Note that if the velocity profile is antisymmetric about a mean value, then the
neutral mode has a phase velocity c = u and is certain to have two critical levels.

Near one of the levels a corresponding Frobenius expansion is

χ̂(y) = a1φ1(y) + a2φ2(y), ψ̂(y) = (u− c)χ̂(y)/H0, (2.9)

φ1(y) = 1+
k2

4
ξ2−β1

18
k2ξ3+O(ξ4), φ2(y) = φ1(y) ln ξ−β1ξ+

1
2

(
β2

1 − β2− 1
2
k2
)
ξ2+O(ξ3),

where β1 =
(
u′′c/u

′
c±u′c/cA

)
/2, β2 =

(
±u′′c/cA+u′′′c /3u

′
c

)
/2, ξ = y − yc. The logarithmic

singularity should be understood as the indentation from below (it is assumed that
u′c > 0). Note, that here the neutral mode with two critical levels is singular (while the
neutral mode with one critical level, as it is easy to show, remains regular: a2 = 0).

Since of concern to us in this paper is the case of a weak magnetic field (when the
‘weight’ of the singularity must also be small), we should give an explicit expression
for the neutral mode of some reference flow and study its behaviour with an increase
of cA. Thus, for the neutral mode in a flow model u(y) = u + tanh y we have from
(2.1) (selecting the inner narrow region near y = 0 with the size ∼ O(cA) and the
surrounding external region and using the matched asymptotic expansions method):

c = u, ω = ku, k ≈ 1− 2
3
c2
A

and

ψ̂(y) ∼


y

2cA
ln
y + cA

y − cA
, |y| � 1,

1

cosh y
, |y| � cA,

χ̂(y) ∼ (4πρ)1/2


1

2
ln
y + cA

y − cA
, |y| � 1,

cA

sinh y
, |y| � cA.

(2.10)

The above expressions represent the so-called ‘combined’ solution to equation (2.1).
It it easy to see that (2.10) differs from the familiar solution for a flow without a
magnetic field (where ψ̂ = 1/ cosh y) only when y <

∼ cA � 1.
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One can see from (2.10) how the mode is split into the regular (ψ̂) and singular
(χ̂) components when cA → 0 and how critical levels come close together. Note that
when cA → 0 the distance between them is O(cA), and a correction for the neutral
wavenumber k is O(c2

A) only.
To conclude this Section, for completeness we give the entire neutral curve for this

flow on the plane (k, cA) – see figure 2. The neutral curve on the plane (ω, cA) is also
of the same form because ω = ku = kc.

3. Problem statement, scaling and basic equations
We wish to study the influence of a weak magnetic field upon the nonlinear spatial

evolution of a weakly unstable wave in a free mixing layer of conducting fluid. The
problem statement coincides with that used by Goldstein & Hultgren (1988), and
Churilov & Shukhman (1994), and Paper I: the evolution downstream of the flow of
a weakly unstable disturbance is considered, which is produced at x → −∞ by an
external source with the frequency ω, somewhat smaller than ωcr which is coincident
with the neutral mode frequency (for a given magnetic field): ωcr − ω � ωcr. The
magnetic field is supposed to be small and is taken into account as a correction.
Therefore, in the first approximation critical levels merge together to form one, and
it coincides with the inflection point, u′′c ≡ u′′(yc) = 0. Designating χ̃ = χ(4πρ)−1/2

and subsequently omitting the tilde, we write the system of initial equations in the
approximation of incompressible magnetic hydrodynamics:

∂

∂t
∆ψ + u

∂

∂x
∆ψ − u′′ ∂ψ

∂x
− cA

∂

∂x
∆χ+ {∆ψ, ψ} − {∆χ, χ} = ν∆2ψ, (3.1)

∂χ

∂t
+ u

∂χ

∂x
− cA

∂ψ

∂x
+ {χ, ψ} = νm∆χ, (3.2)

where {a, b} = axby − aybx and ψ and χ are two-dimensional disturbances of the
stream function and of the z-component of the vector potential of the magnetic field
in the background of a plane-parallel flow and a homogeneous magnetic field:

ψ0 =

∫ y

dy u(y), χ0 = cAy. (3.3)

Along with the usual viscosity ν, magnetic viscosity νm is also involved here. Both
viscosities are considered small and need to be taken into account inside the CL
only. The ratio Pm = ν/νm is called the magnetic Prandtl number, and for the time
being it will be assumed that Pm = O(1). Note also that in (3.1) a term is omitted,
which is responsible for the viscous broadening of an unperturbed flow. Because
the effects caused by viscous broadening were studied in some earlier work (e.g.
Goldstein & Hultgren 1988; Hultgren 1992; Churilov & Shukhman 1994) and they
are not considered in this paper.

It is easy to see that the neutral mode does indeed consist of the regular (ψ)
and singular (χ) components on a critical level splitting when cA = 0 and being
weakly coupled when cA � 1. Therefore, the solution outside the CL (i.e. of the outer
problem) in the first approximation is

ψ = 2εBg(y) cos θ, χ =
cA

u− c ψ; θ = kx− ωt+Θ,

where g(y) is the eigenfunction of the neutral mode of the Rayleigh equation (i.e.
equation (2.3) with zero right-hand side) with the boundary condition g → 0 when
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y → ±∞,

g = 1 + α1(y − yc) + α2(y − yc)2 + · · · , y → yc; α2 =
(
u′′′c /u

′
c + k2

)
/2,

Θ is its phase, k = ωcr/c is the wavenumber, and ε � 1 is the small parameter
characterizing the disturbance amplitude; the coefficient α1 is determined by solving
the boundary-value problem for g(y).

The following scaling of quantities involved in the problem will be used:

ω = ωcr + ε1/2Ω, ν = ηε3/2, νm = ηmε
3/2, (3.4)

cA = εCA. (3.5)

Scaling (3.4) means that in the analysis we preserve the possibility of studying – in
terms of a unified approach – the three CL regimes: viscous, unsteady, and nonlinear,
i.e. it is assumed that the respective scales

`ν ∼ ν1/3, `t ∼ B−1dB/dx, `N ∼ ε1/2

are of the same order. It may be worth noting that with such a scaling, as was shown
for the first time by Goldstein & Hultgren (1988), the effect of mean-flow divergence
becomes important only at downstream distance x ∼ xν ∼ γL/ν = O

(
ε−1
)
, while the

main nonlinear effects considered below take place at x ∼ xN ∼ γ−1 = O
(
ε−1/2

)
which

is much less than xν . Hence the neglect of the viscous broadening of the underlying
mean flow in the governing equations (3.1) and (3.2) is justified (although, in principle,
it would be taken into account at the next stage of evolution as is done in Goldstein
& Hultgren 1988 and Churilov & Shukhman 1994).

Scaling (3.5) means that we wish to confine ourselves to so small a value of the
magnetic field (or more exactly, we wish to consider so large values of the nonlinearity,
viscosity and unsteadiness) that it is possible to neglect the splitting of the CL. Indeed,
as we have shown in § 2, the distance between critical levels L ∼ O(cA) is (i.e. O(ε) in
view of the scaling (3.5)), while the width of each of the CLs, without regard to in
which of the three possible regimes they are, is O(ε1/2), i.e. it is much larger than L.
This means that the two CLs actually merge into a single common CL†.

It also follows from (3.5) that the magnetic field influence upon the linear part
of the problem may be neglected, i.e. we may disregard the shift of the stability
boundary ∆ωcr and ∆kcr due to magnetic field – they are O(c2

A) ∼ O(ε2), while the
supercriticality is O(ε1/2).

We introduce a long evolution variable ξ and an inner variable Y :

ξ = ε1/2x, y − yc = ε1/2Y .

Amplitude B and phase Θ are functions of ξ.
The technique for obtaining evolution equations is well known. The solution of the

inner problem according to the (not given here) inner asymptotic representation of

† Scaling (3.5) defines minimal magnetic field which is necessary for non-trivial coupling with
the flow field. However the scaling cA = O(ε1/2) is also possible. In this case the CL width is of
the same order as the distance between them. In this case the problem becomes substantially more
complicated because the system of equations for the inner problem defies all attempts at analytical
study. On the other hand, such a scaling would make it possible to study such an evolution scenario
where the interaction of two close CLs would occur. Unquestionably such an interaction is of
independent interest and will perhaps become the subject of special study.

Note that recently the case of the finite (cA = O(1), but cA < w) magnetic field also was
considered (Shukhman 1998).
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the outer solution is constructed in the form of a series in powers of ε1/2:

ψ = ε
(
Ψ (1) + ε1/2Ψ (2) + εΨ (3) + . . .

)
, χ = ε3/2φ+ . . . .

The first two iterations for ψ do not apply to the magnetic field and are trivially
matched to the outer solution: Ψ (1) = 2B cos θ, Ψ (2) = 2α1BY cos θ. The third
iteration for ψ and the first for χ give the desired evolution equations. On introducing
ζ = Ψ

(3)
Y Y − 2B

(
u′′′c /u

′
c + k2

)
cos θ, we write

Lηζ=−2
u′′′c
u′c

[(
Ω−cdΘ

dξ

)
B sin θ+c

dB

dξ
cos θ

]
+ φY

∂φY Y

∂x
− φY Y Y

∂φ

∂x
+ CA

∂φY Y

∂x
,

(3.6)

Lηmφ = −2kCAB sin θ, (3.7)

where

Lµ = c
∂

∂ξ
+
(
u′cY − Ω/k

) ∂
∂x

+ 2kB sin θ
∂

∂Y
− µ ∂2

∂Y 2
.

The conditions for matching the outer and inner solutions are called the modified
solvability conditions (MSC) and, at the order considered, have the form

B

k

(
I0

dΘ

dξ
− ΩI1

)
=

∫ ∞
−∞
− dY 〈ζ cos θ〉, I0

k

dB

dξ
=

∫ ∞
−∞
− dY 〈ζ sin θ〉, (3.8)

where

I1 =

∫ ∞
−∞
− dy

u′′g2

(u− c)2
, I2 =

∫ ∞
−∞
g2dy, I0 = cI1 − 2k2I2 .

Here
∫
− stands for a Cauchy principal value, while integrals in (3.8) mean∫ ∞

−∞
− dY (· · ·) = lim

Z→∞

∫ Z

−Z
dY (· · ·) , 〈· · ·〉 =

1

2π

∫ 2π

0

dθ(· · ·) .

Equations (3.6), (3.7) are the main equations defining the solution inside the CL
and its contribution to MSC (3.8). The vorticity ζ is conveniently represented as the
sum of the ‘magnetic’ (ζm) and ‘non-magnetic’ (ζh) parts, ζ = ζm + ζh, so that, instead
of (3.6), we obtain

Lηζh = −2
u′′′c
u′c

[(
Ω − cdΘ

dξ

)
B sin θ + c

dB

dξ
cos θ

]
, (3.9)

Lηζm = φY
∂

∂x
φY Y − φY Y Y

∂

∂x
φ+ CA

∂

∂x
φY Y . (3.10)

The system of equations (3.7)–(3.10) must be supplemented with boundary condi-
tions when |Y | → ∞ ensuing from the matching to the outer solution:

φ ∼ −2CA
u′cY

B cos θ + · · · , ζm ∼
(

2CA
u′cY

2

)2

B cos θ + · · · ,

ζh ∼
2u′′′c
ku′c

2

[(
Ω − cdΘ

dξ

)
B cos θ − cdB

dξ
sin θ

]
Y −1 + · · · .

It is interesting to compare the system of equations (3.7)–(3.10) with an analogous
system of equations describing the nonlinear evolution of disturbances in a weakly
stratified flow (Paper I). It is easy to see that equation (3.7) for φ is identical to
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equation (2.9a) of I for density P (in this case, however, the coefficient of magnetic
viscosity, rather than the diffusion coefficient for density changes, is involved here);
MSC (3.8) is identical to MSC (2.10) of I, and the only formal difference between the
two problems lies in the difference of the right-hand sides of equation (3.10) of this
paper and equation (2.9b) of I for the ‘magnetic’, ζm, and ‘stratified’, ζs, components
of the vorticity, respectively. Note also that here, unlike I, none of the values of the
magnetic Prandtl number is specific to the disturbance dynamics, while the unity
value of the usual Prandtl number made the ‘stratified’ nonlinear term in the NEE
vanish.

Generally speaking, the system of equations (3.7)–(3.10) must be solved numerically
as done in I. We, however, proceed as follows. First we consider the evolution regimes
corresponding to reasonably small amplitudes when the CL is either viscous or
unsteady, and determine the amplitude validity range of these regimes. Next, assuming
that, with sufficiently large amplitudes, the regime of a quasi-steady nonlinear CL
must be established, we obtain the NEE in this regime also, and we determine
its validity range. Further, by synthesizing results on the evolution in different CL
regimes, an attempt will be made to describe the entire course of evolution. In doing
so, our treatment will be based on the analogy with I where such an analytical
study was strengthened by the numerical solution of a system of equations similar to
(3.7)–(3.10).

4. Evolution in linear (viscous and unsteady) CL regimes
With a chosen scaling, B � 1 corresponds to these regimes. The solution of equa-

tions (3.7), (3.9) and (3.10) in these regimes is constructed in the form of expansions
in powers of B, and it is sufficient to limit oneself to the cubic nonlinearity†. The
complex amplitude Â = B exp(iΘ) is convenient in this case. Since the nonlinearity
associated with the ‘non-magnetic’ part of the vorticity, is non-competitive in these
regimes, when calculating ζh we need only limit ourselves to the linear in B contri-
bution, which is equivalent to the indentation of the point y = yc from below in the
integral I1. Upon performing standard calculations (e.g. Goldstein & Leib 1989; Wu
et al. 1993; Churilov & Shukhman 1994), we obtain the desired evolution equation:

i

k
Ĩ0

dÂ

dξ
+
Ω

k
Ĩ1Â = −2πC2

A

k8u′c
3

c7

∫ ∞
0

dξ1

×
∫ ∞

0

dξ2R(ξ1, ξ2;Pm, Λ)Â(ξ−ξ1)Â(ξ−ξ1−ξ2)Â(ξ−2ξ1−ξ2) + · · · , (4.1)

where

R =

∫ ξ1

0

dξ3 ξ
2
1ξ

2
3 exp

{
−Λ

3

[
2ξ3

1 − ξ3
3 + 3ξ2

1ξ2 + P−1
m ξ3

3

]}
+

∫ ξ2

0

dξ3 ξ
3
1(ξ1 + 2ξ3) exp

{
−Λ

3

[
ξ3

1 + 3ξ2
1(ξ2 − ξ3) + P−1

m

(
ξ3

3 + (ξ1 + ξ3)
3
)]}

−
∫ ξ1

0

dξ3 ξ
2
1ξ

2
3 exp

{
−Λ

3

[
ξ3

3 + P−1
m

(
2ξ3

1 − ξ3
3 + 3ξ2

1ξ2

)]}
† It is important to point out that although in equations (3.7), (3.9) and (3.10) describing the CL

structure the linear terms are much less than nonlinear ones for the linear CL regimes, in MSC (3.8)
the linear left side and nonlinear right side are of the same order. Hence, in the final equation (4.1)
the nonlinear and nonlinear terms have the same order and can be made to balance.
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+

∫ ξ1

0

dξ3 ξ
2
1ξ3(2ξ1−ξ3) exp

{
−Λ

3

[
ξ3

3 + P−1
m

(
(2ξ1−ξ3)

3 − 3ξ1(ξ1 − ξ3)
2 + 3ξ2

1ξ2

)]}
+

∫ ξ1

0

dξ3 ξ3(ξ1 + ξ2)
2(2ξ1 + 2ξ2 − ξ3)

× exp

{
−Λ

3

[
ξ3

3 + P−1
m

(
(ξ1 + ξ2)

3 + 3(ξ1 − ξ3)(ξ1 + ξ2)
2 + (ξ1 + ξ2 − ξ3)

3
)]}

+

∫ ξ1

0

dξ3 ξ2(ξ1 − ξ3)(ξ1 + 2ξ2 + 3ξ3)(2ξ1 + ξ2)

× exp

{
−Λ

3

[
(ξ1 − ξ3)

3 + P−1
m

(
4ξ3

3 + ξ3
2 + 3ξ2ξ3(ξ2 + 2ξ3)+(ξ1+ξ2+ξ3)

3
)]}

. (4.2)

Here Λ = k2u′c
2
η, the dots mean the non-competitive contribution of the usual

‘non-magnetic’ nonlinearity proportional to Â|Â|2/γ3 and the tilde over I1 means that
the integral is evaluated with the indentation of y = yc from below. Equation (4.1)
describes the evolution in both linear CL regimes: viscous and unsteady, because an
arbitrary relation between `ν and `t is possible here. When `ν ∼ `t and `t � `ν it can
be solved numerically only (although in the latter case, i.e. in the limit of an unsteady
CL, it is easy to find analytically the asymptotic solution).

For the numerical solution, equation (4.1) is conveniently brought to a ‘universal’
form. By extracting the supercriticality-induced correction to the wavenumber, Â =
Ã exp (iKξ), K = Re(Ĩ1/Ĩ0)Ω, and returning to the ‘physical’ variables, A = εÃ, ν =
ε3/2η, cA = εCA, x = ε1/2ξ, γL = ε1/2γ̂L ≡ −ε1/2Im(Ĩ1/Ĩ0)Ω, we obtain

dA

dx
− γLA =

2πi

Ĩ0

k8u′c
3

c7
c2
A

∫ ∞
0

dx1

×
∫ ∞

0

dx2R(x1, x2;Pm, Λ)A(x− x1)A(x− x1 − x2)A(x− 2x1 − x2). (4.3)

As x → −∞ the disturbance grows exponentially, A = A0 exp(γLx). We put A(x) =
A0a(x) exp (γLx), a(x)→ 1 when x→ −∞, and introduce a new evolution variable
T = T0 exp (2γLx), T0 = 2π|Ĩ0|−1|A0|2c2

A(2γL)−8k8u′c
3
c−7. In these variables, equation

(4.3) assumes the form

da

dT
= e−iϕ

∫ ∞
0

ds s6e−s
∫ 1

0

dσ
K(σ, s;Pm, Γ )

(1 + σ)7
a
(
T e−s/(1+σ)

)
a
(
T e−σs/(1+σ)

)
a
(
T e−s

)
,

(4.4)

with initial condition a(T =0)=0. Here only the phase ϕ defined by the relationship
iĨ−1

0 = |Ĩ0|−1 exp(−iϕ) depends on the flow structure. The explicit form of the kernelK
may be easily obtained from (4.2). Here parameter Γ = 2cγL/(k

2u′c
2
ν)1/3 characterizes

the relative role of the viscosity and unsteadiness in the CL at the initial stage of
evolution when the unsteady scale `t is defined by the linear growth rate γL. When
Γ � 1 we are dealing with a disturbance starting in the viscous CL regime, and when
Γ � 1 the unsteady CL regime is at work†.

First we consider the limiting cases of viscous and unsteady CLs.

† Of course, upon reaching the nonlinearity threshold, the unsteady scale `t is defined by the
current growth rate γ = |A|−1d|A|/dx and the CL regime is no longer defined by the parameter Γ
only.
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Figure 3. Dependence of the function a5, involved in the Landau constant, on the magnetic
Prandtl number Pm (heavy curve). Thin lines show asymptotic expansions (4.6)

4.1. Viscous CL regime

To this case there corresponds a formal limit Λ → ∞ in (4.3) (or Γ → 0 in (4.4)).
Because of the fast decreasing exponents, the main contribution to the integral on
the right-hand side is made by small delays. The nonlinearity becomes local in x,
transforming equation (4.3) to a Landau–Stuart–Watson equation:

dA

dx
− γLA =

8e−iϕ

|Ĩ0|
k10/3u′c

−5/3

ν7/3
c2
A a5(Pm)A|A|2. (4.5)

We will not give here the unwieldy analytical expression for the function a5(Pm)
involved in the Landau constant†. It contains many integrals which have to be
computed numerically, however. Therefore, we limit ourselves only to a plot of a5

(see figure 3) and to asymptotic representations at large and small Pm. We have

a5(Pm) =

 a
(l)
5 P

5/3
m + O(P

4/3
m ), Pm � 1,

a
(s)
5 Pm + O(P

4/3
m ), Pm � 1,

(4.6)

a
(l)
5 = ( 1

6
π)Γ 2

(
2/3
) (

3/4
)1/3

[
1− 25/3

∫ 1

0

(1− z2)(1 + z) dz(
z3 + 6z2 + 3z + 2

)5/3

]
= 0.58154 . . . ,

a
(s)
5 = |a2|/2, a2 = −( 1

6
π)Γ

(
1/3
) (

3/2
)1/3

= −1.6057 . . . ,

(for Pm = 1, a5 = 0.7257 . . .). Here Γ (x) is the Euler function. The constant a2

is a coefficient in the asymptotic expansion of the function Φ2(λ) when λ � 1:
Φ2 ≈ −π+ a2λ

−4/3 (Churilov & Shukhman 1996). An important point is that a5(Pm)
is positive for all Pm. Since Im Ĩ0 = πcu′′′c /u

′
c
2
< 0, the real part of the coefficient of

A|A|2 (i.e. the Landau constant) is negative (cosϕ < 0), and equation (4.5) describes

† The designation is introduced by analogy with I where a similar function a4(Pr) was also used.
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a stabilization on the level |A| = Asat:

Asat = d1

(
ν7/3γL

c2
A

)1/2

∼ A1, d1 =

[
u′c

5/3|Ĩ0|
8k10/3a5(Pm)| cosϕ|

]1/2

. (4.7)

4.2. Unsteady CL regime

Assuming Λ→ 0 in (4.3) (or Γ →∞ in (4.4)) we obtain from (4.3):

dA

dx
−γLA =

4π e−iϕ

3|Ĩ0|
k8u′c

3

c7
c2
A

∫ ∞
0

ds s6
∫ 1

0

dσ σ3(1+σ)2A(x−s)A(x−σs)A (x− (1 + σ)s) ,

(4.8)
or, in ‘universal’ variables, from (4.4)

da

dT
= 2

3
e−iϕ

∫ ∞
0

ds s6 e−s
∫ 1

0

dσ
σ3(1 + σ2)

(1 + σ)7
a
(
T e−s/(1+σ)

)
a
(
T e−σs/(1+σ)

)
a
(
T e−s

)
. (4.9)

The structure of such an equation has been investigated on numerous occasions (e.g.
Hickernell 1984; Churilov & Shukhman 1988; Goldstein & Choi 1989). It is easy to
describe the character of its solution. The stage of exponential growth with a growth
rate γL and the attainment of the nonlinearity threshold

|A| = A2 ∼ γ4
L/cA (4.10)

is followed by an explosive growth according to the law

A ∼ c−1
A (x0 − x)−4+iβ(ϕ)

(
or a ∼ (T0 − T )−4+iβ(ϕ)

)
. (4.11)

This expression represents an exact solution of equation (4.8) with the term γLA
omitted. The behaviour of the argument of the complex amplitude a and the ‘time
of explosion’ T0 depend on the ϕ. Because of the ambiguity of the function β(ϕ)
(e.g. Shukhman 1991), we have no prior knowledge of the particular branch for
the solution when T → T0. The time T0 also cannot be calculated analytically.
Therefore, this equation in the universal form (4.9) was solved numerically for
ϕ = arctan( 1

2
π) + ( 1

2
π) ≈ 0.8195π, which corresponds to the hyperbolic tangent profile

u = u+ tanh y with u = 1 (for which Ĩ0 = −2(2 + iπu), Ĩ1 = −2iπ). The outcome is
shown in figure 5 (the pertinent curve is marked as 10 6 Γ 6 ∞).

4.3. The intermediate case

Despite the ‘stabilizing’ sign of the nonlinear term in (4.9) (cosϕ < 0) the disturbance
reaches an explosive stage, provided it starts from the region of unsteady CL, Γ � 1,
unlike the disturbance starting from the region of viscous CL, Γ � 1. In principle,
these two limiting cases suffice to produce a picture of the evolution in linear CL
regimes. However, it is also interesting to study the character of the transition from
one regime to another as the parameter Γ varies. It is for this purpose only that
a numerical solution of NEE (4.4) for arbitrary values of Γ was sought (see also
Goldstein & Leib 1989; Leib 1991; Wu & Cowley 1995).

As in § 4.2, calculations were carried out for ϕ ≈ 0.8195π and it was assumed that
Pm = 1. The evolution of disturbances starting from the region of reasonably small
Γ , Γ < 0.8, is shown in figure 4 on the plane

(
T ,Γ 4|a(T )|T 1/2

)
. The quantity plotted

here on the ordinate axis, is proportional to the amplitude A: A = dΓ 4a(T )T 1/2,

d = (|Ĩ0|/2π)1/2c−1
A c

−1/2k−4/3u′c
7/6
ν4/3. For such values of Γ , there is not yet any

explosive growth. One can see that, with decreasing Γ , the saturation amplitude
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Figure 4. Solution of NEE (4.4) describing the evolution in linear CL regimes, at a not too
large supercriticality (Γ ≡ 2γL/ν

1/3 6 0.8) and with the same dissipation coefficients (Pm = 1) and
ϕ = 0.8195π.
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Figure 5. Same as figure 4 but for a reasonably large supercriticality (0.9 6 Γ 6 ∞).

comes closer to the value given in (4.7) (dashes) calculated from the approximate
equation (4.5).

Figure 5 illustrates the explosive growth of disturbances starting from the region
Γ > 0.9. It is evident that when Γ > 10 the evolution follows the scenario for a purely
unsteady CL (Γ = ∞). Thus, a critical value of Γ (for the given Pm = 1) turns out to
be localized in the region 0.8 < Γ < 0.9, which is in reasonably good agreement with
elementary estimates.
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Figure 6. Diagram of disturbance development at Pm = 1. Case cA � ν2/3. Moderately heavy
lines show nonlinearity thresholds; curve 1, A1 = (γLν

7/3/c2
A)1/2; curve 2, A2 = γ4

L/cA; curve 3,

A3 = γ2
L. The arrows indicate the various stages of evolution: −→ A ∼ exp(γLx),

α
=⇒ A ∼ (x0−x)−α,

β

− · − · → A ∼ ξβ . Curve 4, A4 = (c2
A/ν

1/2γL)4/3. The heavy line ABCD bounds from the right the
region where the magnetic nonlinearity is dominant. Cross-hatching shows the quasi-steady CL
region. The region (gap) of the unsteady nonlinear CL is filled.

4.4. The resulting picture of evolution in linear CL regimes

Explosive growth according to the law |A| ∼ c−1
A (x0− x)−4 (when γL < c

1/2
A ) is not the

final stage of evolution: because of the smallness of the magnetic field, the unsteady

scale `t ∼ γ ∼
(
c2
A|A|2

)1/8
does not increase sufficiently fast with increasing amplitude,

and when

|A| ∼ cA (4.12)

the nonlinear scale `N ∼ |A|1/2 overtakes it – there occurs a transition to the regime
of nonlinear CL. As in I, this transition is realized from the explosive stage of the
unsteady CL.

For disturbances with a sufficiently small supercriticality, γL < ν1/3, for which the
saturation is the final stage of evolution, the nonlinearity threshold A1(γL), coinciding

in this case in order of magnitude with Asat(γL) ∼
(
ν7/3γL/c

2
A

)1/2
, lies below the formal

boundary of the transition to the nonlinear CL (A ∼ ν2/3) throughout the region of
viscous CL (γL < ν1/3) only if

cA > ν2/3. (4.13)

In this case the evolution from start to finish proceeds in the regime of viscous CL,
i.e. equation (4.5) remains valid in the entire course of the evolution.

In the case

cA < ν2/3 (4.14)

however, saturation in the viscous CL regime is possible only for disturbances
with a sufficiently small γL

(
γL < c2

A/ν < ν1/3
)
. Disturbances with a larger γL
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Figure 7. Same as in figure 6 but for the case cA � ν2/3.(
c2
A/ν < γL < ν1/3

)
, without reaching saturation (or, equivalently, the nonlinearity

threshold), find themselves in the nonlinear CL regime.
Therefore, for constructing a full picture, it is necessary to distinguish two cases of

relationships between parameters of the medium†: cA > ν2/3 and cA < ν2/3.
Figure 6 shows the amplitude–supercriticality diagram for the case cA > ν2/3. The

lower part of the diagram
(
|A| < max{cA, γ2

L}
)

corresponds to the linear CL regimes
under discussion. Different kinds of lines show CL regime boundaries and nonlinearity
thresholds, and different arrows show the laws of amplitude variation corresponding

to these regimes. In the region γL > c
1/2
A the magnetic nonlinearity is no longer capable

of having a substantial influence upon the evolution, and the usual ‘non-magnetic’
nonlinearity is not yet competitive here. Therefore, this region involves the usual
exponential growth of disturbances with the growth rate γL right up to the boundary
of the transition to the nonlinear CL regime: |A| ∼ A3 ∼ γ2

L.
Figure 7 presents the case cA < ν2/3. For the time being, only the part of the

diagram where |A| < max{ν2/3, γ2
L} is discussed. Here the region of values of γL where

the magnetic field influences the evolution is narrower, γL < c2
A/ν. At larger γL the

evolution is almost the same as at a corresponding value of γL without a field: growth
according to the law ∼ exp(γLx) prior to the transition to the nonlinear CL regime
at A ∼ ν2/3, if γL < ν1/3, or at A ∼ γ2

L, if γL > ν1/3. Note that with such small
values of the magnetic field, elements of the ‘fast’ scenario (see § 1) do not manifest
themselves yet: there is no stage of explosive amplitude growth, and the transition
to the nonlinear CL (if there is no saturation in the viscous CL regime) proceeds
immediately from the linear stage, as in scenarios with the regular neutral mode.

Thus, we have ascertained that at certain values of parameters the evolution does
not culminate in saturation in the linear CL regimes, but the transition to the
nonlinear CL regime occurs.

To advance further in the study, as has already been pointed out in § 3, it is
necessary to have the numerical solution of the ‘exact’ system of equations (3.7)–
(3.10). We, however, shall not seek such a numerical solution, but avail ourselves of

† It will be recalled that in the weakly-stratified problem it was also necessary to distinguish two
cases: Ri < ν2/3 (Churilov & Shukhman 1996) and Ri > ν2/3 (Paper I).
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the analogy of the problem at hand with the problem of disturbance evolution in
a weakly stratified flow considered in I where we carried out a similar numerical
investigation. This analogy can be extended to the variant of the problem from I
where the nonlinearity due to stratification, has, as in this case, a stabilizing sign, i.e.
to the case Pr < 1.

For this analogy to be realized, we proceed as follows. Suppose that after the
transition to the nonlinear CL regime and some relaxation stage the regime of quasi-
steady nonlinear CL is established, i.e. an evolution regime where the vorticity and the
magnetic field inside the CL can be considered to be instantaneously adjusting to a
local instantaneous value of amplitude (as if they were following it). Such a regime is
amenable to analytical study, and we can obtain a corresponding evolution equation
and determine its validity range. The equation to be obtained for such a regime,
as will be shown later in the text, resembles closely the corresponding equation (i.e.
equation (4.8a)) of I. This will permit us to describe the evolution in the present case,
based on the similarity of the equations and on results of a numerical study obtained
in I.

5. Regime of quasi-steady nonlinear CL (hypothetical)
The word ‘hypothetical’ appearing in the heading means that, in fact, we do not yet

know if the realization of this regime in the course of the evolution is possible. Indeed,
in a weakly stratified flow (I), when Pr < 1, such a regime could be attained only at
sufficiently large values of γL, at which stratification does not play a substantial role.
It turns out that in this case we have a similar situation†. Nevertheless, studying this
regime and its validity range helps at a qualitative level to understand the character
of the solution which could be obtained through a numerical study of the ‘exact’
system of equations.

Now, we suppose that the amplitude has sufficiently grown, all relaxation processes
are over, and the regime of quasi-steady nonlinear CL is attained‡. The quasi-
steadiness in the nonlinear CL regime implies the smallness of the evolution term in
the operators L compared not only with the nonlinear but also the viscous term,
which corresponds to the inequalities

`t � `3
ν/`

2
N � `N or γ̂ � η/B � B1/2 , γ̂ =

∣∣B−1dB/dξ
∣∣ ≡ ε−1/2γ. (5.1)

The meaning of the right-hand inequality (5.1) is obvious. The left-hand inequality
means that unsteady processes which are still important in regions of so-called outer
diffusion layers (ODL) (see, for example, Churilov & Shukhman 1995), having the
scale

lODL ∼ (ν/γ)1/2 ∼ (`3
ν/`t)

1/2,

are expelled together with these layers to the distant periphery of the CL: lODL � `N .
Equations (3.7), (3.9) and (3.10) are conveniently represented in terms of the

variables τ = ξ/c and z = (u′c/2B)1/2(Y − Yc(τ)), where Yc(τ) = (Ω −Θτ)/(ku
′
c) is the

displacement of a critical level of the disturbance under consideration with respect to

† At least for the case Pm ∼ 1. For Pm � 1, the situation is somewhat more complicated (see
§ 6.3).
‡ Recall that the quasi-steadiness can occur not only in a developed nonlinear CL, but also in

the viscous CL regime the quasi-stationarity conditions are always satisfied (Churilov & Shukhman
1996).
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a critical level of the neutral mode. We obtain

M(λ/Pm)φm = − 1

k(2Bu′c)
1/2
Tφm, (5.2)

Mλζm = − 1

k(2Bu′c)
1/2
Tζm +

u′c
(2B)2

(
φ′m
∂φ′′m
∂θ
− φ′′′m

∂φm

∂θ

)
, (5.3)

Mλζh = − 1

k(2Bu′c)
1/2
Tζh −

2u′′′c
k(2Bu′c

3)1/2
[(Ω −Θτ)B sin θ + Bτ cos θ] , (5.4)

where

Mµ = z
∂

∂θ
+ sin θ

∂

∂z
− µ ∂

2

∂z2
, T =

∂

∂τ
+

Θττ

k(2Bu′c)
1/2

∂

∂z
− Bτ

2B
z
∂

∂z
, λ =

η(u′c)
1/2

k(2B)3/2
,

the prime designates the derivative with respect to z, φm ≡ φ + CA
(
2B/u′c

)1/2
z and

λ is so-called Haberman parameter which characterizes the relative importance of
viscosity and nonlinearity. In the first approximation unsteady terms (terms with T
on the right-hand sides of (5.2)–(5.4)) can be neglected. It is in this sense that we
are using the term quasi-steadiness throughout: ζ and φ depend in this case on the
evolution variable only parametrically – through a local instantaneous value of the
amplitude.

In Churilov & Shukhman (1996), devoted to quasi-steady evolution regimes, we
introduced four functions of the Haberman parameter λ which can be used to
represent the NEE in such regimes. Proceeding here along the same lines, we introduce
a further new function Φ5(λ, Pm):

Φ5(λ, Pm) =

∫ ∞
−∞
− 〈g5 cos θ〉dz, (5.5)

where g5(λ, Pm; z, θ) satisfies the equation

Mλg5 =
1

4

∂

∂z

[
∂

∂θ

(
f′1
)2 −

(
f′1
∂f1

∂θ

)′ ]
. (5.6)

Here f1 = g1(λ/Pm; z, θ) + 2z, g1(λ; z, θ) is the solution of the equation

Mλg1(λ; z, θ) = −2 sin θ (5.7)

with boundary condition ∂g1/∂z → 0 as z → ±∞. Note that it immediately follows
from the symmetry properties of (5.6), (5.7) that

∫
〈g5 sin θ〉dz = 0.

Using the functions g5 and g1, and also the function g2(λ; z, θ) introduced in
Churilov & Shukhman (1996) and as the solution of the equation Mλg2 = −2 cos θ,
the solution of the system (5.2)–(5.4) is written as

φm = CA

(
B

2u′c

)1/2 [
g1

(
λ/Pm; z, θ

)
+ 2z

]
+ · · · ≡ CA

(
B

2u′c

)1/2

f1 + · · · , (5.8)

ζm =
C2
A

2B
g5(λ, Pm; z, θ) + · · · , (5.9)

ζh =
u′′′c

k(2Bu′c
3)1/2

[
(Ω −Θτ)Bg1(λ; z, θ) + Bτg2(λ; z, θ)

]
+ · · · . (5.10)

Dots designate contributions caused by unsteady terms. The function g5(λ, Pm; z, θ)
and the associated function Φ5(λ, Pm) (for Pm = O(1)) are calculated in Appendix A.
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At this point we shall give only the asymptotic expressions for Φ5 at small (and also
large) values of λ needed now:

Φ5(λ, Pm)
Pm=O(1)

=

{
C (5)P

−1/2
m λ−1/2, λ� 1,

a5(Pm)λ−7/3, λ� 1.
(5.11)

Here

C (5) =
2

3

∫ ∞
0

dz

z3/2

(
1

ez − 1
− 1

z
+

1

2

)
= 0.49129 . . . ,

and the function a5(Pm) is plotted in figure 3.
Contributions to the right-hand sides of MSC (3.8) are expressed in terms of the

functions Φ1(λ), Φ2(λ) and a newly introduced function Φ5(λ, Pm) as∫ ∞
−∞
− 〈ζh sin θ〉dY =

u′′′c

ku′c
2
Φ1(λ)

(
Ω − cdΘ

dξ

)
B,

∫ ∞
−∞
− 〈ζh cos θ〉dY =

u′′′c

ku′c
2
Φ2(λ) c

dB

dξ
,∫ ∞

−∞
− 〈ζm cos θ〉 dY =

c2
A(

2Bu′c
)1/2

Φ5(λ, Pm) ,

∫ ∞
−∞
− 〈ζm sin θ〉 dY = 0 . (5.12)

The ‘magnetic’ function g5(λ, Pm; z, θ), like the ‘stratified’ function g4(λ, P r; z, θ) of I,
is even, i.e. it is invariant under the transformation z → −z, θ → 2π− θ. Therefore,
it, like g4, makes only a ‘cos θ ’ contribution to the MSC. Furthermore, as in I (and in
contrast to the case of weakly three-dimensional disturbances (Churilov & Shukhman
1995)), the interaction of the regular and singular components occurs throughout the
CL thickness, and not only in outer diffusion layers, and hence this contribution has a
local (i.e. dependent on the value of the amplitude in a given place only), rather than
integral character. These factors are both of important significance: because of the
identity of the symmetry properties and the character of the interaction between the
regular and singular components, the corresponding NEE and hence the evolution
character turn out also to be alike in the two problems.

Substituting (5.12) into the right-hand sides of (3.8) and solving the resulting system
for dB/dξ, gives

dB

dξ
=

2k2u′′′c

u′c
2

[
I2|Ω|B −

c

2k

C2
A(

2Bu′c
)1/2

Φ5(λ, Pm)

]
Φ1(λ)

∆(λ)
, (5.13)

where ∆(λ) ≡ I2
0 + c2(u′′′c /u

′
c
2)2Φ1(λ)Φ2(λ).

A NEE in the form (5.13) is suitable for describing both quasi-steady regimes, i.e.
not only the nonlinear (λ � 1) but also the viscous ones (λ � 1). When λ � 1 it
coincides with equation (4.5) written in the real form, and when λ� 1 it takes the form

dB

dξ
= η

C (1)

∆(0)

u′′′c
u′c

[
kI2|Ω|

(2Bu′c)
1/2
− ck1/2c2

A

(ηPm)1/2

C (5)

(2Bu′c)
5/4

]
. (5.14)

Equation (5.14) describes the development of disturbances in the regime of a
developed nonlinear CL, provided that this regime can be reached evolutionarily,
from the initially small disturbance.

In the subsequent analysis, we pass to ‘physical’ variables and represent (5.14) in
brief form:

d|A|
dx

=

(
d2

νγL

|A|3/2 −
d3

P
1/2
m

c2
Aν

1/2

|A|9/4

)
|A|, d2 > 0, d3 > 0. (5.15)
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On evaluating from (5.15) the nonlinear growth rate γ = |A|−1d|A|/dx as

γ ∼ max

{
νγL

|A|3/2 ,
c2
Aν

1/2

|A|9/4

}
,

we find that the quasi-steadiness conditions (5.1), i.e. the validity range of (5.14),
(5.15), are satisfied if

max

{
νγL

|A|3/2 ,
c2
Aν

1/2

|A|9/4

}
� ν

|A| � |A|
1/2, or |A| � max

{
cA

( cA
ν2/3

)3/5

, γ2
L, ν

2/3

}
.

(5.16)

In the subsequent analysis, once again, it is necessary to distinguish between the
two cases: cA > ν2/3 and cA < ν2/3. In figures 6 and 7 (referring to the cases cA > ν2/3

and cA < ν2/3) the region where the quasi-steadiness conditions in the nonlinear CL
regime (5.16) are satisfied is shown by cross-hatching.

6. The resulting evolution scenario
We now endeavour to sketch a full evolution picture based on the results obtained

in §§ 4 and 5. At this point our concern is with the fate of only those disturbances
which do not reach saturation in the viscous CL regime.

6.1. The case cA � ν2/3

A distinguishing characteristic of this case is the presence of a ‘gap’ (filled in figure 6)

cA < |A| < cA
(
cA/ν

2/3
)3/5

, γ2
L < |A|, (6.1)

between the amplitude level where the transition to the nonlinear CL regime occurs,
and the validity range of equation (5.15) (i.e. the region where the approximation of a
quasi-steady nonlinear CL holds true). This gap generates a break in the continuous
description of the evolution. To understand what happens to the disturbance after it
enters this gap from the explosive growth stage, it is necessary to have the numerical
solution of the ‘exact’ system of equations (3.6)–(3.8)†. We came across precisely the
same situation in I (the case Pr < 1) where we embarked on such a numerical study,
it merely lent support to a qualitative picture which could be predicted, based on
analysing the equation obtained for the quasi-steady nonlinear CL regime. Thus we
shall not give here unwieldy numerical calculations but make use of the analogy.

The magnetic contribution in (5.15) is negative, which corresponds to a decrease of
the amplitude in the amplitude region where this contribution dominates, i.e. when

|A| < A4 ∼
(
c2
A/ν

1/2γL
)4/3

. (6.2)

Hence when γL < c
1/2
A

(
cA/ν

2/3
)3/10

(see figure 6) the region of a quasi-steady nonlinear
CL is evolutionarily unattainable: even though the disturbance approaches it from
below, it will be expelled backward (which is symbolized by the

⋂
-shaped arrow

in figure 6). This means that the amplitude of disturbances entering this gap will

† In fact, immediately after the stage of the explosive growth (4.11) the unsteady and nonlinear
terms in (3.6) and (3.7) become dominant and of the same order: `t ∼ `N � `ν . This does not
permit us to investigate the evolution by analytical methods. For the numerical solution in the gap,
the initial condition resulting from matching with the previous stages is needed. It is very difficult
to make such a matching in reality, hence even if we tackled this problem numerically it would be
best to start from the very beginning, i.e. from a very small amplitude, as done in I.
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oscillate in a limited range, without exceeding the level corresponding to the gap’s
upper boundary:

|A|max ∼ cA
(
cA/ν

2/3
)3/5

. (6.3)

It is this behaviour that we observed in numerical calculations done in I pertaining
to a similar situation (Pr < 1, see figure 13 in I). From this standpoint one can
conclude that nonlinearity ultimately inhibits the amplitude not only in the region of
supercriticalities corresponding to a viscous CL (γL < ν1/3) but also in the adjacent

region of explosive growth in the unsteady CL regime (ν1/3 < γL < c
1/2
A

(
cA/ν

2/3
)3/10

).

In the region of supercriticalities γL > c
1/2
A

(
cA/ν

2/3
)3/10

the magnetic field scarcely
affects the evolution, and the latter proceeds almost in the same manner as in non-
conducting fluid: following a relaxation stage in the region of amplitudes |A| ∼ A3 =
γ2
L the exponential growth is substituted by a power-law growth

|A| ∝ (νγL)2/3x2/3 (6.4)

in the regime of a developed quasi-steady nonlinear CL (Goldstein & Hultgren 1988).

6.2. The case cA � ν2/3

The evolution picture for this case is presented schematically in figure 7. There is no
unsteadiness gap in the nonlinear CL regime in this case, and equation (5.13) would
suffice to describe the entire course of evolution in the region γL < ν1/3.

As has already been pointed out, in the region of the viscous CL (|A| < ν2/3, γL <
ν1/3) equation (4.5) applies and describes the stabilization on the level Asat ∼(
ν7/3γL/c

2
A

)1/2
. With increasing γL (to the value of c2

A/ν), Asat grows and approaches
the nonlinear CL boundary where a description of the evolution using equation (4.5)
is no longer applicable. In this region the saturation level can be determined from an
exact equilibrium condition obtainable by setting the right-hand side of (5.13) equal
to zero:

Φ(λ, Pm) ≡ λΦ5(λ, Pm)=I2|Ω|ηu′c/(cC2
A), Φ(λ, Pm)=

{ (
λ/Pm

)1/2
C (5), λ� 1,

a5(Pm)λ−4/3, λ� 1.
(6.5)

The function Φ has a maximum of order unity at λ of order unity. Hence it follows
from (6.5) that when |Ω| > |Ω|∗ ∼ O

(
C2
A/η
)
, or, in physical variables, when γL >

(γL)∗ ∼ O
(
c2
A/ν
)

there exist no equilibrium solutions. This means that the magnetic

field cannot stop the growth of such disturbances, and when |A| ∼ O
(
ν2/3
)

(for

γL < ν1/3) or when |A| ∼ O
(
γ2
L

)
(for γL > ν1/3) they reach the quasi-steady nonlinear

CL regime with power-law growth (6.4).
In closing it may be noted that the regime of a developed quasi-steady nonlinear

CL (λ� 1) described by equation (5.14), in which the magnetic term would play an
active role, is not realized in any of the cases considered – either when cA > ν2/3, or
when cA < ν2/3: the disturbance either reaches a stable state at smaller amplitudes
(λ >
∼ 1) or passes to the unsteady nonlinear CL regime.

6.3. Evolution at small magnetic Prandtl numbers, Pm � 1

In the foregoing discussion we confined ourselves to studying a flow with Pm = O(1).
With dissipation coefficients differing greatly from each other, there emerges an ever
more crowded (with different variants) evolution picture, because we now have two
scales rather than one `ν: a viscous scale `ν and a magneto-viscous scale `νm . The
number of possible relations between the value of the magnetic field and dissipation
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coefficients also increases: instead of two (cA < ν2/3 and cA > ν2/3). we now have
three. A description of research results on all possible variants arising if we abandon
the condition Pm = O(1) would make our paper too unwieldy. Hence we restrict
ourselves only to a brief presentation of results relating to the case Pm � 1 (i.e.
ν � νm) and consider only two of the three possible relations between cA, ν and νm,

namely: cA � ν2/3 and cA � ν
2/3
m .

6.3.1. The viscous and unsteady CL regimes

As long as the amplitude is small enough, the evolution is described by equation
(4.1) (or by (4.3)). To appreciate the way in which disturbances develop in these
regimes when νm � ν, we consider three limiting cases:

(i) γ � ν1/3 (i.e. `t � `ν � `νm),

(ii) ν1/3 � γ � ν
1/3
m (i.e. `ν � `t � `νm),

(iii) ν
1/3
m � γ � 1 (i.e. `νm � `t).

For each of these cases, from (4.3) we obtain the corresponding NEE:

(i)
dA

dx
−γLA =

4e−iϕ

|Ĩ0|
k10/3u′c

−5/3
c2
A

|a2|
ν4/3νm

A|A|2, (6.6)

(ii)
dA

dx
−γLA =

2πe−iϕ

|Ĩ0|
k6u′cc

2
A

νmc4

∫ ∞
0

ds s3
∫ 1

0

dσ σ2A(x−s)A(x−σs)A (x−(1+σ)s) , (6.7)

(iii)
dA

dx
−γLA =

4πe−iϕ

3|Ĩ0|
k8u′c

3
c2
A

c7

∫ ∞
0

ds s6
∫ 1

0

dσ σ3(1 + σ2)A(· · ·)A(· · ·)A(· · ·). (6.8)

Equation (6.6) trivially follows from (4.5) (if we make use of the asymptotic
expression (4.6) for a5(Pm) at Pm � 1). It, like (4.5), gives stabilization at |A| = Asat:

Asat = d̃1

(
ν4/3νmγL

c2
A

)1/2

, d̃1 =

[
u′c

5/3|Ĩ0|
8k10/3a

(s)
5 | cosϕ|

]1/2

. (6.9)

Equation (6.8) describing the evolution in the unsteady CL regime, coincides with
(4.8) and gives an explosive growth |A| ∝ c−1

A (x0−x)−4. A substantially new element is
equation (6.7) referring to the intermediate region when the unsteady scale `t is larger
than the viscous scale `ν but smaller than the magneto-viscous scale `νm . It turns
out that in this case, as in the case of the usual unsteady CL, the equation retains
its non-local character and after the amplitude reaches the nonlinearity threshold
|A| ∼ A5,

A5 ∼ ν1/2
m γ

5/2
L /cA ,

also gives an explosive growth:

|A| ∝ ν
1/2
m

cA
(x1 − x)−5/2. (6.10)

It is interesting to note a structural change of the nonlinear term with increasing
`t ∼ γ, i.e. at the transition (i) → (iii):

c2
A

A3

`3
νm
l4ν
→ c2

A

A3

`3
νm
`4
t

→ c2
A

A3

`7
t

.
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Figure 8. Schematic representation of the CL structure when Pm � 1 and `ν � `N � `νm . ∆ is the
‘width’ of the separatrix (i.e of the ‘cat’s eye’ boundary).

Such a structure is easy to see by analysing the structure of equation (4.5) and the
dependence of the Landau constant on Pm. Therefore, both the structure of NEE
(6.6)–(6.8) and hence the law of evolution (6.10) can be readily ‘guessed right’ based
on such analysis only.

6.3.2. Quasi-steady CL regimes

As in the case Pm = O(1), explosive stages are intermediate ones. To construct a
full picture, it is necessary to supplement the set of NEE (6.6)–(6.8) with an equation
suitable for description of quasi-steady CL regimes. Now instead of two limiting cases
– |A| � ν2/3 (λ� 1) and |A| � ν2/3 (λ� 1) – one needs to consider three:

(a) |A| � ν2/3 (λ� 1, `N � `ν),

(b) ν2/3 � |A| � ν
2/3
m (Pm � λ� 1, `ν � `N � `νm),

(c) ν
2/3
m � |A| (λ� Pm, `νm � `N).

The CL can now be called truly viscous (or, more properly, dissipative) only in case
(a) and truly nonlinear in case (c). Case (b) is an intermediate one: the nonlinear CL
scale `N = |A|1/2 is now larger than the viscous scale `ν , but is still smaller than the

magneto-viscous scale `νm = ν
1/3
m . By this it is meant that the magnetic field structure

obeying equation (3.7) is described by the magneto-viscous CL approximation and
can be calculated by a well-known method. The structure of the vorticity field ζm
determined from (3.7) is more complicated, however. It constitutes a chain of ‘cat’s
eyes’ with the transverse size ∼ `N embedded in a wide region of the magneto-viscous
CL (figure 8).

As a result of calculations, we again arrive at the NEE with the same form as (5.13);
however, at Pm � 1 a different form of the asymptotic expansion of the function
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Figure 9. Diagram of the development of disturbances at Pm � 1. The case cA � ν
2/3
m . Moderately

heavy lines show nonlinearity thresholds: curve 1, A1 = (γLνmν
4/3/c2

A)1/2; 2, A2 = γ4
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1/2
L /cA. Curve 4, A4 = (ν

1/2
m c2

A/νγL)4/3. The meaning of the other designations is the
same as in figure 6.

Φ5(λ, Pm), obtained in Appendix B, must be used here:

Φ5(λ, Pm)
Pm�1
=


C (5)P

−1/2
m λ−1/2, λ� Pm,

1
2
|C (2)|Pmλ−2, Pm � λ� 1,

1
2
|a2|Pmλ−7/3, λ� 1,

(6.11)

where C (2) = −2.5008 . . . , a2 = −1.6057 . . ..
From this equation at λ� 1 we again obtain equation (6.6) and at λ� Pm equation

(5.14) which describes the evolution in the quasi-steady nonlinear CL regime (which
is evolutionarily unattainable here, as in the case with Pm = O(1)). In the region
Pm � λ� 1, from (5.13) and (6.11) we obtain the NEE which we write in brief form
in physical variables:

d|A|
dx

=

(
d2

νγL

|A|3/2 − d4

c2
A

νm

)
|A|, d4 > 0. (6.12)

This equation, like (6.6), has a stable steady solution

|A|sat = A6 ∼
(
ννmγL/c

2
A

)2/3
. (6.13)

The set of NEEs (6.6)–(6.8), (5.14) and (6.12) permits us to describe the develop-
ment of disturbances at Pm � 1. This can best be done employing the amplitude–
supercriticality diagram. As mentioned above, we shall confine our treatment to two

variants only: cA � ν
2/3
m and cA � ν2/3.

The evolution when cA � ν
2/3
m is shown in figure 9. The picture in this case

resembles that obtained in our investigation of the case cA � ν2/3 at Pm = O(1)
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(figure 6). A new element is the presence of an intermediate asymptotic representation

when ν1/3 < γL < ν
1/3
m in the region of amplitudes ν

1/2
m ν5/6/cA < |A| < ν

4/3
m /cA,

namely: |A| ∼ (x1 − x)−5/2. As in the case with Pm = O(1), there exists a region

of supercriticalities, ν1/3 < γL < (c2
Aν

1/2
m /ν)2/5, where the growth of disturbances is

limited:

|A| < Amax ∼
(
c2
Aν

1/2
m /ν

)4/5
,

but the stationary solution is not established here, unlike the region of supercriticalities

γL < ν1/3, where |A| tends to an equilibrium value (6.13). When γL > (c2
Aν

1/2
m /ν)2/3 the

magnetic field does not affect the evolution, and when |A| > γ2
L the transition to the

regime of power-law growth |A| ∼ x2/3 occurs here.

The evolution in the case of a very weak magnetic field cA � ν2/3 is shown in
figure 10. A substantially new element here (compared with the case Pm = O(1)) is
the presence in the viscous CL region of a subregion

c2
A/νm < γL < c2

A/ν, ν2/3 < |A| < ν2/3
m ,

in which the evolution when |A| > ν2/3 proceeds in accordance with equation (6.12).
Note that the non-magnetic term gives the main contribution to the right-hand side of
(6.12) when |A| < |A|sat. Therefore, the disturbance, upon reaching the level |A| ∼ ν2/3,
passes to the usual regime of the quasi-steady nonlinear CL with the law |A| ∼ x2/3,
and only after that, at larger amplitudes, the magnetic nonlinearity comes into play,
which leads to the stabilization.

In the region γL > c2
A/ν there are no differences from the case Pm = O(1) (cf.

figure 7).

To conclude this Section, we wish to point out that in the case of large Pm, Pm � 1,
which was also investigated by this author, there exists no stable stationary solution

in the intermediate region ν
2/3
m < γL < ν2/3, similar to (6.13). For completeness we
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also give here the results derived by calculating the function Φ5(λ, Pm) at large Pm:

Φ5(λ, Pm)
Pm�1
=


C (5)P

−1/2
m λ−1/2, λ� P−1

m ,
c5, P−1

m � λ� 1,
b5λ

−2/3, 1� λ� Pm,

a
(l)
5 P

5/3
m λ−7/3, Pm � λ,

where c5 = 0.5553 . . . , b5 = 0.3523 . . . , a(l)
5 = 0.58154 . . . .

7. Discussion
This treatment has generally reinforced the anticipated evolution picture typical of

disturbances with the weakly singular neutral mode, enabling the determination for
the flow at hand of the parameter which governs the transition from the ‘fast’ to ‘slow’
scenario. Without going into the details associated with a possible large difference of
dissipative coefficients and complicating the overall picture, we summarize the results
obtained assuming that Pm = O(1).

It turns out that in a flow with a weak parallel magnetic field the key role is played
by the parameter cA/ν

2/3. Like the parameter Ri/ν2/3 in the weakly stratified flow
problem (I) and the parameter k4

z /ν
2/3 in the problem of weakly three-dimensional

disturbances (Churilov & Shukhman 1995), it is responsible for the realization of
two different types of evolution behaviour: when cA � ν2/3 there exists a range

of supercriticalities, ν1/3 < γL < c
1/2
A , where explosive behaviour occurs, and when

cA � ν1/3 the region of explosive behaviour disappears.
The analysis also revealed the stabilizing role of the magnetic nonlinearity. The

manifestation of this role is different for cA < ν2/3 and cA > ν2/3. When cA < ν2/3

this role simply implies that the magnetic nonlinearity in the part of the viscous CL
region where it is still important (γL < c2

A/ν)), stabilizes the instability in the viscous
CL regime (|A| < ν2/3) and prevents the transition to the nonlinear quasi-steady CL
regime (figure 7).

When cA > ν2/3 the stabilizing role of the magnetic nonlinearity manifests itself
in a greater variety of fashions. Thus, all disturbances starting from the viscous
CL region (γL < ν1/3) reach saturation in the viscous CL regime (|A| < ν2/3), with
the nonlinear evolution ceasing. The behaviour of disturbances starting from the
unsteady CL region (γL > ν1/3) is more complicated. The growth of disturbances with

ν1/3 < γL < c
1/2
A upon reaching the nonlinearity threshold evolves into an explosive

phase, |A| ∼ (x0 − x)−4, and right up to the transition to the nonlinear CL regime
at |A| ∼ cA the stabilizing role of the magnetic nonlinearity hardly manifests itself
at all (except for the appearance of local parts where the amplitude decreases (see
figure 5) which are absent in the case of a destabilizing sign of the nonlinearity (e.g.
figure 3 of I). However, upon reaching the nonlinear CL regime and entering the
‘gap’ region (figure 6), the disturbance ceases to grow and begins to decrease, with
quasi-periodic oscillations setting in subsequently. The behaviour of disturbances with

cA < γL < c
1/2
A (cA/ν

2/3)3/10 is similar to that of disturbances with ν1/3 < γL < c
1/2
A with

the only difference that they enter the nonlinear CL region not from the explosive
growth stage but immediately from the exponential growth stage.

The stabilizing effect of the magnetic nonlinearity ceases to have influence for

the perturbations with larger supercriticality only: c
1/2
A (cA/ν

2/3)3/10 < γL � 1, which
evolve as in the case of a flow of non-conducting liquid.

A principal goal of this paper was to elucidate the question: to what extent
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is the ‘gap’ in the unsteady nonlinear CL (figure 6) after the explosive stage in
the unsteady (linear) CL regime a typical element of the evolution scenario? This
question may also be formulated thus: what are the characteristic features of the
interaction between the regular and singular disturbance components which lead to
the fact that the amplitude at which the nonlinear CL becomes nonlinear (`N > `t, `ν)
is smaller than the amplitude at which the nonlinear CL becomes also quasi-steady
(`t < `3

ν/`
2
N < `N), i.e. to the fact that there exists a range of amplitudes (gap)

where the CL is already a nonlinear one, but it cannot yet be described in terms
of a quasi-steady approximation (terms with T in equations (5.2)–(5.4) cannot be
discarded)?

We have tried in I (where we detected for the first time the presence of the ‘gap’)
to understand in ‘physical language’ the reason behind its behaviour. The presence
of the ‘gap’ is due to the fact that, because of the back influence of the regular
component (vorticity) upon the singular component (density in I, or the magnetic
vector-potential φ here), a refinement of the scales accompanying the transition to
the nonlinear CL regime and related to the non-isochronic motion of neighbouring
liquid particles, ceases on a scale L which is larger than the scale LD ∼ ν/|A| on
which the diffusion comes into play (leading to a fast smoothing and the formation
of a quasi-steady nonlinear CL).

By comparing the findings reported by Churilov & Shukhman (1995), in I, and
in this paper, we can now suggest that the unsteady nonlinear CL stage following
the explosive growth stage in the unsteady CL regime is more likely to be a typical
element of the evolution scenario for disturbances with the weakly singular neutral
mode rather than the exception attributed to some degeneration. In the case of the
problem of a weakly stratified flow this degeneracy implied that, because of the specific
symmetry of the equations, the nonlinear term in the NEE caused by the stratification
turned out to be reduced, as compared with its prior estimate, to the factor (`ν/`)

3,
where ` is the CL scale, and one would suspect that this is precisely the reason for
the presence of the gap. In this paper the formal reason for the appearance of the
gap that when λ � 1 the function Φ5 = O(λ−1/2) � 1 rather than O(1)†, and such
a behaviour of Φ5 is dictated by the character of interaction between the singular
and regular disturbance components and is unassociated with degeneracy. By the
character of interaction of the components we mean the following: either it occurs
throughout the CL, as is the case here and in I, or it is expelled to the periphery, to
the region of outer diffusion layers, as was the case in the problem of weakly three-
dimensional disturbances (Churilov & Shukhman 1995), as well as the symmetry
properties of the components. It will be recalled that in the present case, as in I, the
regular component is even with respect to the transformation z → −z, θ → 2π − θ
and hence it makes only a ‘cosine’ contribution to the MSC (see (5.12)), while in the
problem of weakly three-dimensional disturbances it is odd and, accordingly, makes
only a ‘sine’ contribution to the MSC (Churilov & Shukhman 1995). The gap is most
likely to occur if the interaction of the components has the same character as in the
present case and in I.

In closing we wish to note a further aspect of the problem at hand. As we have
repeatedly emphasized, in the case of a sufficiently large supercriticality the magnetic
field plays a passive role only and the amplitude increases in the same manner as in

† It is easy to see that if at λ � 1 we had Φ5 = O(1), it would follow from (5.13) that the
boundary of the transition to the quasi-steadiness regime would coincide with the boundary of the
transition to the nonlinear CL |A| ∼ cA.
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Figure 11. Profile of the x-component of the magnetic field in the midsection (θ = π).

the case without a field (i.e. |A| ∝ (νγL)2/3x2/3) right up to the applicability limits of
weakly nonlinear theory (|A| ∼ 1) (unless factors neglected here come into play still
earlier, such as the viscous expansion of an undisturbed flow (Goldstein & Hultgren
1988)). However, the magnetic field itself is affected by the velocity field. If the initial
magnetic field H0 = O(ε) is considered to be a certain ‘priming’ field, we may regard
our problem as a kinematic dynamo problem. In this case it is appropriate to pose
the question of the effectiveness of such a dynamo, i.e. to what extent can the initial
magnetic field be enhanced in the course of the nonlinear development of a shear flow
instability. It is easy to see that such a dynamo mechanism does not give a significant
enhancement of the field. Indeed, in the regime of a developed nonlinear CL (λ→ 0)
the field structure can be readily calculated from (5.8) and (A8):

Hx

H0

=


2π|z|
Q(κ)

, κ > 1,

0, κ < 1,

Hy

H0

=


2πσ

Q(κ)

(
2|A|
u′c

)1/2

k sin θ, κ < 1,

0, κ > 1.

Hence it is evident that the maximum value of the x-component of the field tends
to a constant value which is attained on the outer boundary of the cat’s eye in its
midsection (i.e. at points |z| = 2 + 0, θ = π) and is(

Hx/H0

)
max

= 4π/Q(1) = π/2 .

The profile Hx(Y ) in the midsection of the cat’s eye is shown in figure 11.
A maximum absolute value of the y-component of the field which is also attained

on the outer boundary of the eye, at θ = 1
2
π, 3

2
π, increases when eye is opening

(∼ |A|1/2), but even on the applicability boundary of the theory (|A| ∼ 1) it remains
of the order of the magnitude of an undisturbed field:

|Hy/H0|max = (π/4)k
(
2|A|/u′c

)1/2
.

Thus, a shear flow cannot transfer a substantial amount of energy to the magnetic
field through an instability, and this kinematic dynamo mechanism is ineffective.
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Appendix A. Asymptotic behaviour of the function Φ5(λ, Pm) in the limiting
cases of a nonlinear (λ� 1) and viscous (λ� 1) CL for Pm = O(1)

We proceed from the system of equations (see § 5)

Mλg5 =
1

4

∂

∂z

[
∂

∂θ

(
f′1
)2 −

(
f′1
∂f1

∂θ

)′ ]
, (A 1)

Mλ/Pmf1(λ/Pm; z, θ) = 0, Mµ = z
∂

∂θ
+ sin θ

∂

∂z
− µ ∂

2

∂z2
(A 2)

with boundary conditions g5 → 0, f1 → 2z as z → ±∞, where the prime denotes
the derivative with respect to z.

First we consider the limit λ → 0, λ/Pm → 0. It is convenient in this case to pass
to the variables κ = z2/2 + cos θ and θ. Designating

h =
∂f1

∂κ
, G = g5 +

1

4

∂

∂κ

[
h2
(
1− cos θ − z2

)]
, (A 3)

and using the relationship

∂h

∂θ
=

λ

Pm
(zh)′′, (A 4)

resulting from (A 2), we rearrange (A 1) to give

∂G

∂θ
= λ

∂

∂κ
z
∂G

∂κ
− λ

4Pm

∂

∂κ

{
(zh)′′h

[
z2 − 2(1− cos θ)

]
+ z

[
(zh)′

]2}
. (A 5)

Here the prime now denotes the derivative with respect to κ, and z = σ[2(κ−cos θ)]1/2,
σ = sign(z). Next, we determine the order of the function G. To do so, we take
advantage of the fact that f1 is near the separatrix, i.e. in the region |κ−1| ∼ O

(
λ1/2
)
,

of O
(
λ1/2
)

(see Brown & Stewartson 1978, as well as the Appendix A of Churilov &
Shukhman 1996). Consequently, h is in this same region, according to (A 3), of O(1),
and G is, according to (A 5), of O(λ−1/2). Generally speaking, it should be expected
that G has also the same order in the region outside the separatrix.

First we solve (A5) away from the separatrix, after that we perform a matching.
Away from the separatrix we put

G = G(−1/2)λ−1/2 + G(0) + G(1/2)λ1/2 + G(1)λ+ · · · ,

f1 = f
(0)
1 + f

(1)
1 λ+ · · · , h = h(0) + h(1)λ+ · · · .

 (A 6)

It must be emphasized that the presence of the contribution ∼ O(λ−1/2) in this
expansion for G is dictated solely by considerations of the matching through the cat’s
eye boundary.

The expansion (A 6) for f1 (and hence for h) is well known (e.g. Haberman 1972).
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For f(0)
1 and h(0) we have

f
(0)
1 =

 4πσ

∫ κ

1

dx

Q(x)
, κ > 1,

0, κ < 1,
h(0) =

 4πσ/Q(κ), κ > 1,

0, κ < 1,
(A 7)

where Q(x) =

∫ 2π

0

[2(κ− cos θ)]1/2dθ.

From (A 5) we have at O(λ−1/2): ∂G(−1/2)/∂θ = 0, whence

G(−1/2) = U(κ). (A 8)

The function U(κ) is determined from the solvability condition of the equation for
G(1/2)

∂G(1/2)

∂θ
=

∂

∂κ
z
∂U

∂κ
. (A 9)

A standard procedure yields

U(κ) =

 C1

∫ κ

1

dx

Q(x)
+ C2, κ > 1,

C3, κ < 1.

It follows from (A 3) that away from the separatrix G(−1/2) = g
(−1/2)
5 . Therefore,

taking into account that as κ→ ∞ in g
(−1/2)
5 there are no contributions proportional

to κ1/2 and const, one must put C1 = C2 = 0.
Thus, away from the separatrix we have

G(−1/2) = U(κ) =

{
0, κ > 1,

C3, κ < 1.
(A 10)

From (A 10) and the definition of the function Φ5(λ, Pm)

Φ5(λ, Pm) =

∫ ∞
−∞
− 〈g5 cos θ〉dz (A 11)

it follows that when λ� 1

Φ5(λ, Pm) = −8C3

3π
λ−1/2 + · · · , (A 12)

and it is obvious that the entire contribution to the integral (A 11) at this order is
made by the inner part of the cat’s eye, κ < 1.

The problem is reduced to calculating C3, i.e. to calculating the jump of the function
G(−1/2) across the cat’s eye boundary. To perform this calculation requires passing to
the solution of equation (A5) near the separatrix, as done for the first time by Brown
& Stewartson (1978) for the function f1.

In this region we put

s = λ1/2(κ− 1), G = U(s, θ)λ−1/2 + · · · , h = h(0)(s, θ) + · · ·

(we omit the upper index 0 of h in what follows). At the main order from (A 5) we
obtain

∂U

∂θ
= z

∂2U

∂s2
+

1

4

{
1

2
z3
(
h2
)′′′ − 1

Pm
z3
[
(h′)2

]′}
, (A 13)
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where z ≡ z(θ) = 2σ sin(θ/2), the prime denoting the derivative with respect to s. We
introduce the variable τ:

τ =

{
8 sin2 1

4
θ, σ > 0,

8 cos2 1
4
θ, σ < 0,

where the angles take the value 0 and 8, and instead of (A 13) we get

∂U

∂τ
=
∂2U

∂s2
+

1

4

{
1

8
τ(8− τ)

(
h2
)′′′ − 1

4Pm
τ(8− τ)

[
(h′)2

]′}
. (A 14)

Since the function G(z, θ) is even with respect to the transformation z → −z,
θ → 2π− θ, the periodicity condition for U(s, θ) may be written in the same form for
s > 0 and s < 0:

U(s, τ = 8) = U(s, τ = 0) . (A 15)

Boundary conditions for U follow from (A 10):

U(s, τ) =

{
0, s→ +∞,
C3, s→ −∞. (A 16)

Since in this region f1 = O(λ1/2) (see (A7)), we put f1 = u(s, τ)λ1/2. Then

h(s, τ) =
∂u(s, τ)

∂s
, (A 17)

where u(s, τ) is the solution of the equation ∂u/∂τ = P−1
m ∂2u/∂s2 with boundary

conditions

u =


σπ

2
s, s→ +∞,

0, s→ −∞,
(A 18)

satisfying the periodicity condition which, because of the oddness of f1(z, θ), should be
written as u(s, 0) = u(s, 8) signs. For the function u(s, τ) we have (Brown & Stewartson
1978; Churilov & Shukhman 1996)

u(s, τ) =

∫ ∞
−∞

dk uk(0)eiks−k2τ/Pm , (A 19)

where

uk(0) = − σ[
1 + exp

(
−8k2/Pm

)]
k2F−(k/P

1/2
m )

, (A 20)

lnF±(k) =
1

2
ln

tanh(4k2)

k2
± iI(k), F±(0) = 2, (A 21)

I(k) =
8

π

∫ ∞
0

qdq

sinh(8q2)
ln

∣∣∣∣q − kq + k

∣∣∣∣+ 1
2
π sgn k, I(0) = 0. (A 22)

The integration in (A 19) proceeds along the real axis with the indentation of the pole
k = 0 from below. We now perform a Fourier-transform in (A 14):

dUk(τ)

dτ
+ k2Uk(τ) =

1

4

{
1

8
τ(8− τ)

[(
h2
)′′′]

k
− 1

4Pm
τ(8− τ)

[(
h′
)2
]
k

ik

}
≡ R(1)

k (τ) + R
(2)
k (τ) = Rk(τ) , (A 23)
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where

R
(1)
k =

1

32
τ(8− τ)

[(
h2
)′′′]

k
, R

(2)
k = − ik

16Pm
τ(8− τ)

[(
h′
)2
]
k
. (A 24)

Next we solve (A 23):

Uk(τ) = Uk(0)e−k
2τ +

∫ τ

0

Rk(t)e
−k2(τ−t)dt .

Using the periodicity condition Uk(8) = Uk(0), we find

Uk(0) =

∫ 8

0

Rk(t)e
−k2(8−t)dt

1− exp(−8k2)
+ aδ(k) + bδ′(k) , (A 25)

and, after performing an inverse Fourier-transform, we get

U(s, 0) = a+ bs+

∫ ∞
−∞

exp(iks)dk

1− exp(−8k2)

∫ 8

0

Rk(t) e−k
2(8−t)dt . (A 26)

Recall that in (A 26) the pole k = 0 is indented from below. When s > 0 the contour
can be closed by a large-radius semicircle in the upper half-plane of the complex
variable k. It is clear that the main contribution will be made by the pole k = 0.

The other poles of the expression
∫ 8

0
dtRk(t) exp

(
−k2(8− t)

)
and the zeros of the

expression
(
1− exp(−8k2)

)
, lying in the upper half-plane, will make an exponentially

small contribution when s → +∞. When s < 0 the contour may be closed in the
lower half-plane, whence it follows that when s → −∞ the integral contains only
exponentially small contributions from the poles of the integrand.

Since when k → 0 the expression
(
1− exp(−8k2)

)
has a second-order zero, the pole

makes a finite contribution if the integral
∫ 8

0
dt Rk(t) exp

(
−k2(8− t)

)
at k = 0 is finite

or has a first-order zero.
It can be shown that (see (A 24)) J (1)

k ≡
∫ 8

0
dtR(1)

k (t) e−k
2(8−t) = O

(
k2
)

as k → 0 and

does not make a finite contribution. Next, we examine the contribution from R
(2)
k :

J
(2)
k ≡

∫ 8

0

dt R(2)
k (t) e−k

2(8−t) = − ik

16Pm

∫ 8

0

dt t(8− t) e−k
2(8−t)

[(
h′
)2
]
k
. (A 27)

From (A 17), (A 19) we have[(
h′
)2
]
k

=

∫
dk1 k

2
1(k − k1)

2uk1
(0)uk−k1

(0) e−[k2
1
+(k−k1)2]τ/Pm . (A 28)

It follows from (A 20), (A 21) that [(h′)2]k = O(1) as k → 0. For k → 0 we therefore
write

J
(2)
k ≈ −

ij

4Pm
k, j =

1

4

∫ 8

0

dt t(8− t)
[(
h′
)2
]
k=0

, (A 29)

whence it is clearly seen that the integrand in (A 26) has at the point k = 0 the first-
order pole. Using (A 20), (A 21) and the relationships I(−k) = −I(k) and F−(−k) =
F+(k), we obtain

j = 6P 1/2
m C (5); C (5) =

2

3

∫ ∞
0

dz

z3/2

(
1

ez − 1
− 1

z
+

1

2

)
. (A 30)
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Using (A 29), (A 30) we obtain from (A 26), by taking the residues at the point k = 0:

U(s, 0) =

{
a+ bs+ 3

8
πC (5)P

−1/2
m + · · · , s→ +∞ ,

a+ bs+ · · · , s→ −∞ ,
(A 31)

where dots denote exponentially small contributions. Upon matching (A 31) to (A 16),
we find that b = 0 and

a = C3 = − 3
8
πC (5)P−1/2

m . (A 32)

Upon substituting the resulting expression for C3 in (A 12), we finally find for
λ→ 0:

Φ5(λ, Pm) = C (5)P−1/2
m λ−1/2 . (A 33)

The asymptotic representation for Φ5(λ, Pm) in the limit of a viscous CL (λ→∞) is
easy to reconstruct by comparing equation (5.13) with equation (4.5) written in real
form. As a result, we obtain for λ→∞

Φ5(λ, Pm) = a5(Pm)λ−7/3 . (A 34)

Appendix B. Asymptotic behaviour of Φ5(λ, Pm) for Pm � 1

When Pm � 1 it is necessary to distinguish three characteristic ranges of values of
λ:

(i) λ� Pm, (ii) Pm � λ� 1, (iii) λ� 1.

In region (i) the CL is truly nonlinear, i.e. `N � `νm � `ν . Obviously, in this region
the representation of the function Φ5 must coincide with that obtained in Appendix
A for the case λ� 1 at Pm = O(1). Therefore

Φ5(λ, Pm) = C (5)P−1/2
m λ−1/2, λ� Pm . (B 1)

In region (iii) the CL is truly dissipative, i.e. `νm � `ν � `N . Therefore, in this case
the representation of Φ5 also coincides with the representation obtained for λ� 1 at
Pm = O(1). We need only take advantage, in (A 34), of the asymptotic representation
of a5(Pm) for Pm � 1 (see (4.6)): a5(Pm) = 1

2
|a2|Pm. Therefore

Φ5(λ, Pm) = 1
2
|a2|Pmλ−7/3, λ� 1 . (B 2)

It remains to finish ‘constructing’ Φ5 only in the intermediate region (ii). Here
`ν � `N � `νm . This means that the magnetic structure may be described in the
approximation of the usual dissipative CL. We write equation (A2) as

z
∂g1

∂θ
− λ

Pm

∂2g1

∂z2
= −2 sin θ − sin θ

∂g1

∂z
, (B 3)

where g1 = f1 − 2z. Next, we pass to the variable x = z(λ/Pm)−1/3. From (B 3) we
then obtain

x
∂g1

∂θ
− ∂2g1

∂x2
= −2(λ/Pm)−1/3 sin θ − (λ/Pm)−2/3 sin θ

∂g1

∂x
. (B 4)

When λ/Pm � 1 the second term on the right-hand side of equation (B 4) may be
omitted, and it is easily solved thereafter:

g1 = (λ/Pm)−1/3
[
Φ(x) eiθ + Φ(x) e−iθ

]
,
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where Φ(x) = i
∫ ∞

0
dt exp(−t3/3− itx). Finally, for f1(λ/Pm, z, θ) we find

f1 = g1 + 2z = 2z − 2(λ/Pm)−1/3

∫ ∞
0

dt e−t
3/3 sin

(
θ − t z

(λ/Pm)1/3

)
. (B 5)

Substituting (B 5) in the right-hand side of (A 1) and linearizing it in f1 gives

Mg5 =
1

(λ/Pm)

{
cos θ +

z

(λ/Pm)1/3

∫ ∞
0

dt e−t
3/3 sin

(
θ − t z

(λ/Pm)1/3

)}
. (B 6)

The function g5 contains two contributions from the first and second terms on the
right-hand side of (B6). It is easy to evaluate that the contribution to g5 and Φ5 from
the second term is (λ/Pm)2/3 times smaller than the contribution from the first term,
and it may be neglected. From the resulting equation Mλg5 = (Pm/λ) cos θ it follows
that in the region of parameters considered (Pm � λ� 1) the function g5(λ, Pm; z, θ)
may be expressed in terms of the function g2(λ; z, θ) introduced earlier (e.g. Shukhman
1991; Churilov & Shukhman 1996) and satisfying the equation Mg2 =−2 cos θ:

g5(λ, Pm; z, θ) = − 1
2
(λ/Pm)−1g2(λ; z, θ) .

Consequently Φ5(λ, Pm) = − 1
2
(λ/Pm)−1Φ2(λ) and finally we have

Φ5(λ, Pm) = 1
2
|C (2)|Pmλ−2, Pm � λ� 1 . (B 7)
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